

- LED: ambiti di utilizzo
- Riduzione e spegnimento
- Regolazione
- LED: il buon esempio

LED: il loro impiego può rivelarsi conveniente

Quello che c'è da sapere sui LED

Nell'ambito dell'illuminazione interna, paragonando le lampadine a incandescenza o le lampadine fluorescenti compatte con lampade a LED, sono queste ultime a uscire vincenti poiché nettamente più efficienti. Nell'illuminazione esterna, i LED si trovano invece confrontati con le efficienti lampade al sodio ad alta pressione. In questo caso la differenza dal punto di vista dell'efficienza energetica è esigua (grafico 1) e attualmente in molti casi l'impiego dei LED per l'illuminazione stradale non è ancora economicamente giustificato. I corpi illuminanti a LED sono infatti più costosi, i vantaggi risiedono tuttavia in una migliore qualità della luce e nelle possibilità di regolazione.

Di principio i LED sono:

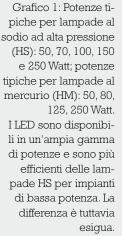
- una valida alternativa a lampade vecchie e inefficienti (per es. mercurio o plug-in)
- attrattivi per installazioni a bassa potenza (≤ 100 W)
- sostanzialmente più cari rispetto alle lampade al sodio ad alta pressione

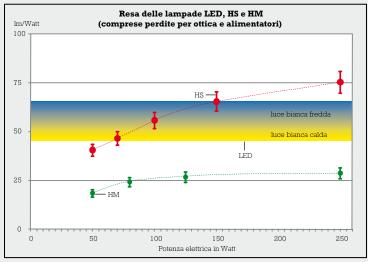
Cinque vantaggi nell'impiego dei LED

- 1. Elevata efficienza energetica
- 2. Lunga durata di vita
- 3. Buona regolazione (accensione immediata, flusso luminoso regolabile)
- 4. Luce bianca con buona resa dei colori
- 5. Luce direzionale con poca dispersione

Cinque svantaggi nell'impiego dei LED

- 1. Tecnologia cara, elevati costi di investimento
- 2. Pezzi di ricambio non sempre garantiti
- 3. Componenti non standardizzati (dipendenza dal prodotto)
- 4. Mancanza di esperienze sul lungo termine
- 5. Sviluppo della tecnologia tuttora in corso

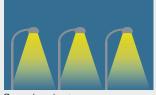

- negli ultimi anni sempre più efficienti e meno cari
- sulla buona strada per diventare economicamente sostenibili anche per grandi impianti di illuminazione stradale.


I LED sono da prendere in considerazione nei sequenti casi

- rinnovamento dell'intero impianto di illuminazione stradale (candelabro e corpo illuminante)
- sostituzione di lampade al mercurio
- percorsi pedonali e piste ciclabili: in questo ambito le lampade ai vapori di sodio ad alta pressione sono generalmente sovradimensionate (grafico 1)
- potenze per le quali le lampade al sodio ad alta pressione sono sotto- o sovradimensionate (queste sono infatti disponibili solo in alcune potenze predefinite)
- particolari esigenze di illuminazione (illuminazione di nuclei, piazze, monumenti ecc.)
- zone che richiedono una bassa dispersione di luce (strade in zone di protezione della natura, strade residenziali ecc.)
- Impianti di illuminazione accesi e spenti di frequente (per es. strade private, vie di accesso agli edifici con sensori di movimento).

I LED sono meno adatti nei seguenti casi

- sostituzione di lampade al sodio ad alta pressione (di età inferiore a 10 anni): il risparmio di energia è piccolo o inesistente, i costi di investimento invece elevati
- I illuminazione di ampie superfici quali strade di grandi dimensioni, campi sportivi o piazze con elevate esigenze di illuminazione.



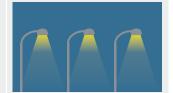
Riduzione e spegnimento: le opzioni

In ambito di illuminazione stradale è possibile risparmiare energia in diversi modi, per esempio ottimizzando i tempi di funzionamento e riducendo temporaneamente la potenza. Di seguito sono illustrate le differenti situazioni e le possibilità tecniche.

Lo spegnimento dell'intero impianto di illuminazione stradale o di alcune parti di esso è tecnicamente sempre possibile. E' solo necessario un sistema di comando centralizzato di solito presente presso le aziende elettriche. La decisione di implementare questa tipologia di provvedimento – per esempio tra le ore 01:00 e 05:00 - è esclusivamente una questione politica e di sicurezza. Questa opportunità dovrebbe essere discussa con la popolazione – per esempio attraverso un sondaggio o nell'ambito di un evento specifico.

Sera: impianto acceso

Notte: impianto spento


Spegnimento alternato

Lo spegnimento alternato dei punti luce non è consigliato: questo provvedimento porta alla formazione di zone illuminate intercalate da zone buie. In queste ultime, veicoli e persone risultano difficilmente visibili.

Notte: un punto luce acceso, uno spento

La riduzione: nei periodi caratterizzati da poco traffico durante la notte, per esempio tra le ore 23:00 e 06:00, è possibile ridurre l'intensità luminosa dell'illuminazione stradale. Questo provvedimento comporta la presenza dei requisiti tecnici descritti in Tabella 1.

Notte: riduzione dell'intensità luminosa

	Requisiti tecnici per la riduzione notturna				
	Soluzioni centralizzate			Soluzioni decentralizzate	
Condizioni	Sistema di comando centralizzato			I componenti devono essere programmati singolarmente	
	1.	2.	3.	4.	5.
Tipo di allacciamento	Cavo a 4 conduttori	Cavo a 3 conduttori	Cavo a 3 conduttori	Cavo a 3 conduttori	Cavo a 3 conduttori
Necessario	Relé + VG a 2 stadi	Sostituzione con cavo a 4 conduttori + relé + VG	Sistema di gestione (Powerline)	Relé temporiz- zato + VG a 2 stadi	EVG program- mabile
Risparmio grazie alla riduzione notturna	25%	25%	30% - 40%	20%	20% - 30%
Costi	bassi	elevati*)	elevati	bassi	medi

Tabella 1: Questi sistemi di regolazione sono validi sia per lampade HS sia per lampade a LED.

Definizioni

Spegnimento notturno parziale

Possibilità di spegnere singole lampade durante la notte, lasciando tuttavia accese quelle situate in punti strategici – per esempio strisce pedonali o incroci pericolosi. Se un Comune esegue questo tipo di spegnimento notturno parziale, significa che dispone di un sistema di gestione corrispondente alla situazione (1.) della tabella.

Alimentatore (VG)

Gli alimentatori sono necessari per limitare la corrente fornita alle lampadine a scarica di gas. In questo contesto viene fatta una distinzione fra alimentatori convenzionali e alimentatori elettronici.

Alimentatore convenzionale (KVG)

L'alimentatore convenzionale limita la corrente tramite una bobina in rame con nucleo di ferro.

Alimentatore elettronico (EVG)

L'alimentatore elettronico regola la corrente tramite degli elementi elettronici. Le perdite elettriche sono nettamente inferiori rispetto a quelle di un alimentatore convenzionale.

Relé

Questo componente elettrico consente di accendere o spegnere singoli consumatori di corrente, quali ad esempio lampade a scarica di gas o LED, utilizzando un circuito secondario.

Plug-in

Le lampadine plug-in – denominate anche lampadine sostitutive – sono lampadine ai vapori di sodio ad alta pressione poco più efficienti delle lampadine ai vapori di mercurio. Sono state sviluppate per una sostituzione diretta di queste ultime.

^{*)} Necessità di adattamento della rete.

LED: il buon esempio

Dopo

	Prima	Dopo
Tipo di lampada	Vecchia lampada al sodio ad alta pressione (plug-in)	LED
Colore della luce	2000 K (luce gialla)	6000 K (luce bianca fredda)
Potenza del sistema	118 Watt	52 Watt
Illuminamento	30 lux/2 lux	13,5 lux/3,5 lux
(max/min)		
Distanza tra i candelabri	32 m	32 m
Altezza dei candelabri	7,5 m	7,5 m
Consumo di energia/	500 kWh/a	220 kWh/a
punto luce		
Risparmio	-	55%

A fine 2009 l'impianto d'illuminazione di una strada secondaria di Lugano, costituito da vecchie lampade dotate di lampadine plug-in, è stato risanato con lampade a LED dotate di regolazione del flusso luminoso. Questo intervento ha portato a una riduzione del consumo di energia pari al 55%. Si sono rivelati quali ulteriori vantaggi la migliore qualità della luce e un'illuminazione più omogenea del campo stradale.

Impressum

Autori: Urs Etter, Sankt Galler Stadtwerke; Jörg Haller, EKZ; Jörg Imfeld, Elektron AG; Dominique Ineichen, AIL; Martin Rölli, CKW; Giuse Togni, S.A.F.E.

Redazione e grafica: Oerlikon Journalisten AG

Foto pagina titolo: bd LIGHT Sagl

Dipartimento del territorio del Canton Ticino, Sezione protezione aria, acqua e suolo Agenzia svizzera per l'efficienza energetica [S.A.F.E.], www.energieeffizienz.ch Associazione svizzera per la luce, www.slg.ch

Ordinazione

topten, Hardstrasse 322a, 8005 Zurigo Download: www.topten.ch/ip, www.toplicht.ch

